1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
/*
Ousía
Copyright (C) 2014, 2015 Benjamin Paaßen, Andreas Stöckel
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <queue>
#include "Node.hpp"
namespace ousia {
namespace dom {
/* Class NodeDescriptor */
int NodeDescriptor::refInCount() const
{
int res = 0;
for (const auto &e : refIn) {
res += e.second;
}
return res + rootRefCount;
}
int NodeDescriptor::refOutCount() const
{
int res = 0;
for (const auto &e : refOut) {
res += e.second;
}
return res;
}
int NodeDescriptor::refInCount(Node *n) const
{
if (n == nullptr) {
return rootRefCount;
}
const auto it = refIn.find(n);
if (it != refIn.cend()) {
return it->second;
}
return 0;
}
int NodeDescriptor::refOutCount(Node *n) const
{
const auto it = refOut.find(n);
if (it != refOut.cend()) {
return it->second;
}
return 0;
}
void NodeDescriptor::incrNodeDegree(RefDir dir, Node *n)
{
// If the given node is null it refers to an input rooted reference
if (n == nullptr) {
rootRefCount++;
return;
}
// Fetch a reference to either the input or the output reference map
auto &m = dir == RefDir::in ? refIn : refOut;
// Insert a new entry or increment the corresponding reference counter
auto it = m.find(n);
if (it == m.end()) {
m.emplace(std::make_pair(n, 1));
} else {
it->second++;
}
}
bool NodeDescriptor::decrNodeDegree(RefDir dir, Node *n, bool all)
{
// If the given node is null it refers to an input rooted reference
if (n == nullptr) {
if (rootRefCount > 0) {
if (all) {
rootRefCount = 0;
} else {
rootRefCount--;
}
return true;
}
return false;
}
// Fetch a reference to either the input or the output reference map
auto &m = dir == RefDir::in ? refIn : refOut;
// Decrement corresponding reference counter, delete the entry if the
// reference counter reaches zero
auto it = m.find(n);
if (it != m.end()) {
it->second--;
if (it->second == 0 || all) {
m.erase(it);
}
return true;
}
return false;
}
/* Class NodeManager */
/**
* The ScopedIncrement class is used by the NodeManager to safely increment a
* variable when a scope is entered and to decrement it when the scope is left.
*/
class ScopedIncrement {
private:
/**
* Reference to the variable that should be incremented.
*/
int &i;
public:
/**
* Constructor of ScopedIncrement. Increments the given variable.
*
* @param i is the variable that should be incremented.
*/
ScopedIncrement(int &i) : i(i) { i++; }
/**
* Destructor of ScopedIncrement. Decrements the referenced variable.
*/
~ScopedIncrement() { i--; }
};
NodeManager::~NodeManager()
{
// Perform a final sweep
sweep();
// All nodes should have been deleted!
assert(nodes.empty());
// Free all nodes managed by the node manager (we'll get here if assertions
// are disabled)
if (!nodes.empty()) {
ScopedIncrement incr{deletionRecursionDepth};
for (auto &e : nodes) {
delete e.first;
}
}
}
NodeDescriptor *NodeManager::getDescriptor(Node *n)
{
if (n) {
auto it = nodes.find(n);
if (it != nodes.end()) {
return &(it->second);
}
}
return nullptr;
}
void NodeManager::registerNode(Node *n)
{
nodes.emplace(std::make_pair(n, NodeDescriptor{}));
}
void NodeManager::addRef(Node *tar, Node *src)
{
// Fetch the node descriptors for the two nodes
NodeDescriptor *dTar = getDescriptor(tar);
NodeDescriptor *dSrc = getDescriptor(src);
// Store the tar <- src reference
assert(dTar);
dTar->incrNodeDegree(RefDir::in, src);
if (src) {
// Store the src -> tar reference
assert(dSrc);
dSrc->incrNodeDegree(RefDir::out, tar);
} else {
// We have just added a root reference, remove the element from the
// list of marked nodes
marked.erase(tar);
}
}
void NodeManager::deleteRef(Node *tar, Node *src, bool all)
{
// Fetch the node descriptors for the two nodes
NodeDescriptor *dTar = getDescriptor(tar);
NodeDescriptor *dSrc = getDescriptor(src);
// Decrement the output degree of the source node first
if (dSrc) {
dSrc->decrNodeDegree(RefDir::out, tar, all);
}
// Decrement the input degree of the input node
if (dTar && dTar->decrNodeDegree(RefDir::in, src, all)) {
// If the node has a zero in degree, it can be safely deleted, otherwise
// if it has no root reference, add it to the "marked" set which is
// subject to tracing garbage collection
if (dTar->refInCount() == 0) {
deleteNode(tar, dTar);
} else if (dTar->rootRefCount == 0) {
// Call the tracing garbage collector if the number of marked nodes
// is larger than the threshold value and this function was not
// called from inside the deleteNode function
marked.insert(tar);
if (marked.size() >= threshold) {
sweep();
}
}
}
}
void NodeManager::deleteNode(Node *n, NodeDescriptor *descr)
{
// Increment the recursion depth counter. The "deleteRef" function called
// below
// may descend further into this function and the actual deletion should be
// done in a single step.
{
ScopedIncrement incr{deletionRecursionDepth};
// Add the node to the "deleted" set
deleted.insert(n);
// Remove all output references of this node
while (!descr->refOut.empty()) {
deleteRef(descr->refOut.begin()->first, n, true);
}
// Remove the node from the "marked" set
marked.erase(n);
}
purgeDeleted();
}
void NodeManager::purgeDeleted()
{
// Perform the actual deletion if the recursion level is zero
if (deletionRecursionDepth == 0 && !deleted.empty()) {
// Increment the recursion depth so this function does not get called
// again while deleting nodes
ScopedIncrement incr{deletionRecursionDepth};
// Deleting nodes might add new nodes to the deleted list, thus the
// iterator would get invalid and we have to use this awkward
// construction
while (!deleted.empty()) {
auto it = deleted.begin();
Node *n = *it;
deleted.erase(it);
marked.erase(n);
nodes.erase(n);
delete n;
}
}
}
void NodeManager::sweep()
{
// Set containing nodes which are reachable from a rooted node
std::unordered_set<Node *> reachable;
// Deletion of nodes may cause other nodes to be added to the "marked" list
// so we repeat this process until nodes are no longer deleted
while (!marked.empty()) {
// Repeat until all nodes in the "marked" list have been visited
while (!marked.empty()) {
// Increment the deletionRecursionDepth counter to prevent deletion
// of nodes while sweep is running
ScopedIncrement incr{deletionRecursionDepth};
// Fetch the next node in the "marked" list and remove it
Node *curNode = *(marked.begin());
// Perform a breadth-first search starting from the current node
bool isReachable = false;
std::unordered_set<Node *> visited{{curNode}};
std::queue<Node *> queue{{curNode}};
while (!queue.empty() && !isReachable) {
// Pop the next element from the queue, remove the element from
// the marked list as we obviously have evaluated it
curNode = queue.front();
queue.pop();
marked.erase(curNode);
// Fetch the node descriptor
NodeDescriptor *descr = getDescriptor(curNode);
if (!descr) {
continue;
}
// If this node is rooted, the complete visited subgraph is
// rooted
if (descr->rootRefCount > 0) {
isReachable = true;
break;
}
// Iterate over all nodes leading to the current one
for (auto &src : descr->refIn) {
Node *srcNode = src.first;
// Abort if the node already in the reachable list,
// otherwise add the node to the queue if it was not visited
if (reachable.find(srcNode) != reachable.end()) {
isReachable = true;
break;
} else if (visited.find(srcNode) == visited.end()) {
visited.insert(srcNode);
queue.push(srcNode);
}
}
}
// Insert the nodes into the list of to be deleted nodes or
// reachable nodes depending on the "isReachable" flag
if (isReachable) {
for (auto n : visited) {
reachable.insert(n);
}
} else {
for (auto n : visited) {
deleteNode(n, getDescriptor(n));
}
}
}
// Now purge all nodes marked for deletion
purgeDeleted();
}
}
}
}
|