1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
|
/*
Ousía
Copyright (C) 2014, 2015 Benjamin Paaßen, Andreas Stöckel
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <functional>
#include <unordered_set>
#include <core/common/Exceptions.hpp>
#include <core/common/Logger.hpp>
#include <core/common/RttiBuilder.hpp>
#include <core/common/Utils.hpp>
#include "Node.hpp"
namespace ousia {
/* Class SharedResolutionState */
/**
* Hash functional used to convert pairs of nodes and int to hashes which
* can be used within a unordered_set.
*/
struct VisitorHash {
size_t operator()(const std::pair<const Node *, int> &p) const
{
std::hash<const Node *> nodeHash;
std::hash<int> intHash;
return nodeHash(p.first) + 37 * intHash(p.second);
}
};
/**
* Alias for the VisitorSet class which represents all nodes which have been
* visited in the name resolution process. The map stores pairs of node
* pointers and integers, indicating for which path index the node has already
* been visited.
*/
using VisitorSet =
std::unordered_set<std::pair<const Node *, int>, VisitorHash>;
/**
* The SharedResolutionState structure represents the state that is shared
* between all resolution paths. A reference to a per-resolution-global
* SharedResolutionState instance is stored in the ResolutionState class.
*/
class SharedResolutionState {
public:
/**
* Type of the node that was requested for resolution.
*/
const Rtti *type;
/**
* Actual path (name pattern) that was requested for resolution.
*/
const std::vector<std::string> &path;
/**
* Tracks all nodes that have already been visited.
*/
VisitorSet visited;
/**
* Current resolution result.
*/
std::vector<ResolutionResult> result;
/**
* Constructor of the SharedResolutionState class.
*
* @param type is the type of the node that should be resolved.
* @param path is a const reference to the actual path that should be
* resolved.
*/
SharedResolutionState(const Rtti *type,
const std::vector<std::string> &path)
: type(type), path(path)
{
}
};
/* Class ResolutionState */
/**
* The ResolutionState class represents a single resolution path used when
* resolving Node instances by name.
*/
class ResolutionState {
public:
/**
* Reference at the resolution state that is shared between the various
* resolution paths.
*/
SharedResolutionState &shared;
/**
* Current resolution root node or nullptr if no resolution root node has
* been set yet.
*/
Node *resolutionRoot;
/**
* Current index within the given path.
*/
int idx;
/**
* Set to true if the resolution currently is in the subtree in which the
* node resolution process was started (no reference boundary has been
* passed yet).
*/
bool inStartTree;
/**
* Set to true, once a compositum has been found.
*/
bool foundCompositum;
/**
* Constructor of the ResolutionState class.
*
* @param shared is the shared, path independent state.
* @param resolutionRoot is the current resolution root node.
*/
ResolutionState(SharedResolutionState &shared,
Node *resolutionRoot = nullptr, int idx = 0,
bool inStartTree = true)
: shared(shared),
resolutionRoot(resolutionRoot),
idx(idx),
inStartTree(inStartTree),
foundCompositum(false)
{
}
/**
* Adds a node to the result.
*
* @param node is the node that has been found.
*/
void addToResult(Node *node)
{
shared.result.emplace_back(ResolutionResult{node, resolutionRoot});
}
/**
* Marks the given node as visited. Returns false if the given node has
* already been visited.
*
* @param node is the node that should be marked as visited.
*/
bool markVisited(Node *node)
{
if (shared.visited.count(std::make_pair(node, idx)) > 0) {
return false;
}
shared.visited.insert(std::make_pair(node, idx));
return true;
}
/**
* Returns true if the search reached the end of the given path.
*
* @return true if the end of the path was reached, false otherwise.
*/
bool atEndOfPath() { return idx == static_cast<int>(shared.path.size()); }
/**
* Returns true if the given type matches the type given in the query.
*
* @param type is the type that should be checked.
* @return true if the type matches, false otherwise.
*/
bool typeMatches(const Rtti *type) { return type->isa(shared.type); }
/**
* Returns true if the given type can contain the node that is currently
* being resolved.
*
* @param type is the type that should be checked.
* @return true if the given type can contain the node that is currently
* begin resolved, false otherwise.
*/
bool canContainType(const Rtti *type)
{
return type->composedOf(shared.type);
}
/**
* Returns true if the resolution process is still allowed to follow
* references. This is only the case if we are at the beginning of the
* resolution process and have not entered another start tree.
*
* @return true if references can still be followed, false if only composita
* may be examined.
*/
bool canFollowReferences()
{
return idx == 0 && inStartTree && !foundCompositum;
}
/**
* Returns true if we can still descend into new composita. This is only
* the case if we have not yet descended into another compositum beforehand.
*
* @return true if composita can be followed, false otherwise.
*/
bool canFollowComposita() { return idx == 0; }
/**
* Returns the number of matching nodes that were found until now.
*
* @return the number of matching nodes.
*/
size_t resultCount() { return shared.result.size(); }
/**
* Returns the name that is currently being search for (at the current path
* position).
*
* @return the current name.
*/
const std::string ¤tName() { return shared.path[idx]; }
/**
* Returns a new ResolutionState instance where the path position is moved
* on by one element.
*
* @return a copy of the current ResolutionState instance with the path
* position being incremented by one.
*/
ResolutionState advance()
{
return ResolutionState{shared, resolutionRoot, idx + 1, false};
}
/**
* Forks current ResolutionState instance with the resolution starting at
* the given node. This function is used when a reference is being followed.
*
* @param newResolutionRoot is the root node of the new subtree in which
* resolution takes place.
* @return a copy of this ResolutionState instance with the resolution root
* begin set to the new root instance and the path position being set to
* zero.
*/
ResolutionState fork(Node *newResolutionRoot)
{
return ResolutionState{shared, newResolutionRoot, 0, false};
}
};
/* Class ResolutionResult */
std::vector<std::string> ResolutionResult::path() const
{
return node->path(resolutionRoot);
}
/* Class Node */
void Node::setName(std::string name)
{
invalidate();
// Call the name change event and (afterwards!) set the new name
NameChangeEvent ev{this->name, name};
triggerEvent(ev);
this->name = std::move(name);
}
void Node::path(std::vector<std::string> &p, Handle<Node> root) const
{
if (!isRoot()) {
parent->path(p, root);
}
if (this != root) {
p.push_back(name);
}
}
std::vector<std::string> Node::path(Handle<Node> root) const
{
std::vector<std::string> res;
path(res, root);
return res;
}
bool Node::canFollowComposita(ResolutionState &state)
{
return state.canFollowComposita();
}
bool Node::canFollowReferences(ResolutionState &state)
{
return state.canFollowReferences();
}
bool Node::resolve(ResolutionState &state)
{
// Try to mark this note as visited, do nothing if already has been visited
if (state.markVisited(this)) {
// Add this node to the result if it matches the current description
if (state.atEndOfPath()) {
if (state.typeMatches(type())) {
state.addToResult(this);
return true;
}
} else {
size_t resCount = state.resultCount();
doResolve(state);
return state.resultCount() > resCount;
}
}
return false;
}
void Node::doResolve(ResolutionState &state)
{
// Do nothing in the default implementation
}
bool Node::continueResolveIndex(const Index &index, ResolutionState &state)
{
Rooted<Node> h = index.resolve(state.currentName());
if (h != nullptr) {
ResolutionState advancedState = state.advance();
if (h->resolve(advancedState)) {
state.foundCompositum = true;
return true;
}
}
return false;
}
bool Node::continueResolveCompositum(Handle<Node> h, ResolutionState &state)
{
// If the name of the compositum explicitly matches the current name in the
// path, advance the search and try to resolve from this position
if (h->getName() == state.currentName()) {
ResolutionState advancedState = state.advance();
if (h->resolve(advancedState)) {
state.foundCompositum = true;
return true;
}
}
// If the name did not match, but we are at the beginning of the path,
// descend without advancing the state
if (canFollowComposita(state)) {
return h->resolve(state);
}
return false;
}
bool Node::continueResolveReference(Handle<Node> h, ResolutionState &state)
{
// We can only follow references if we currently are at the beginning of the
// path and this node is the root node. Additionally only follow a reference
// if the node the reference points to is known to contain the type that is
// currently asked for in the resolution process
if (canFollowReferences(state) && state.canContainType(h->type())) {
ResolutionState forkedState = state.fork(this);
return continueResolveCompositum(h, forkedState);
}
return false;
}
std::vector<ResolutionResult> Node::resolve(
const Rtti *type, const std::vector<std::string> &path)
{
// Create the state variables
SharedResolutionState sharedState(type, path);
ResolutionState state(sharedState, this);
// Kickstart the resolution process by treating this very node as compositum
if (path.size() > 0) {
continueResolveCompositum(this, state);
}
// Return the results
return sharedState.result;
}
std::vector<ResolutionResult> Node::resolve(const Rtti *type,
const std::string &name)
{
// Place the name in a vector and call the corresponding resolve function
return resolve(type, std::vector<std::string>{name});
}
bool Node::checkDuplicate(Handle<Node> elem,
std::unordered_set<std::string> &names,
Logger &logger) const
{
const std::string &name = elem->getName();
if (!names.emplace(name).second) {
logger.error(std::string("Element with name \"") + name +
std::string("\" defined multiple times in parent ") +
type()->name + std::string(" \"") +
Utils::join(path(), ".") + std::string("\""),
*elem);
return false;
}
return true;
}
bool Node::checkIsAcyclic(std::vector<const Node *> &path,
std::unordered_set<const Node *> &visited,
NodeReferenceCallback callback) const
{
// Add this node to the path
path.push_back(this);
// A cycle was found, abort, shorten the path to the actual cycle
if (visited.count(this)) {
return false;
}
visited.insert(this);
// Continue allong the path
const Node *node = callback(this);
if (node != nullptr) {
if (!node->checkIsAcyclic(path, visited, callback)) {
return false;
}
}
// Remove this node from the path
path.pop_back();
return true;
}
bool Node::doValidate(Logger &logger) const { return true; }
bool Node::validateName(Logger &logger) const
{
if (!Utils::isIdentifierOrEmpty(name)) {
logger.error(type()->name + std::string(" name \"") + name +
std::string("\" is not a valid identifier"),
this);
return false;
}
return true;
}
bool Node::validateIsAcyclic(const std::string &name,
NodeReferenceCallback callback,
Logger &logger) const
{
std::vector<const Node *> path;
std::unordered_set<const Node *> visited;
if (!checkIsAcyclic(path, visited, callback)) {
logger.error(std::string("Attribute \"") + name + ("\" is cyclic."),
this);
logger.note("The following nodes are included in the cycle: ",
SourceLocation{}, MessageMode::NO_CONTEXT);
for (size_t i = 0; i < path.size(); i++) {
auto node = path[i];
const std::string &name = node->getName();
const std::string &typeName = node->type()->name;
const std::string suffix =
i == path.size() - 1
? std::string{" (this node closes the cycle):"}
: std::string{":"};
if (name.empty()) {
logger.note(std::string("Node of internal type ") + typeName +
std::string(" declared here") + suffix,
node);
} else {
logger.note(std::string("Node \"") + name +
std::string("\" of internal type ") + typeName +
std::string(" declared here") + suffix,
node);
}
}
return false;
}
return true;
}
bool Node::validateParentIsAcyclic(Logger &logger) const
{
return validateIsAcyclic("parent", [](const Node *thisRef) -> const Node *
{ return thisRef->parent.get(); },
logger);
}
void Node::invalidate()
{
// Only perform the invalidation if necessary
if (validationState != ValidationState::UNKNOWN) {
validationState = ValidationState::UNKNOWN;
if (parent != nullptr) {
parent->invalidate();
}
}
}
void Node::markInvalid()
{
// Do not override the validationState if we're currently in the validation
// procedure, try to mark the parent node as invalid
if (validationState != ValidationState::VALIDATING &&
validationState != ValidationState::INVALID) {
validationState = ValidationState::INVALID;
if (parent != nullptr) {
parent->markInvalid();
}
}
}
bool Node::validate(Logger &logger) const
{
switch (validationState) {
case ValidationState::UNKNOWN:
validationState = ValidationState::VALIDATING;
try {
if (doValidate(logger)) {
validationState = ValidationState::VALID;
return true;
}
}
catch (OusiaException ex) {
// Make sure the validation state does not stay in the
// "VALIDATING" state
validationState = ValidationState::INVALID;
throw;
}
validationState = ValidationState::INVALID;
return false;
case ValidationState::VALID:
return true;
case ValidationState::INVALID:
return false;
case ValidationState::VALIDATING:
// We've run into recursion -- a circular structure cannot be
// properly validated, so return false
logger.error(
"This validation run lead to a cycle. As a fallback it is set "
"to invalid!", *this);
return false;
}
return false;
}
void Node::setParent(Handle<Node> p)
{
parent = acquire(p);
invalidate();
}
/* RTTI type registrations */
namespace RttiTypes {
const Rtti Node =
RttiBuilder<ousia::Node>("Node")
.property("name", {&RttiTypes::String,
{[](const ousia::Node *obj) {
return Variant::fromString(obj->getName());
}},
{[](const Variant &value, ousia::Node *obj) {
obj->setName(value.asString());
}}})
.property("parent", {&Node,
{[](const ousia::Node *obj) {
return Variant::fromObject(obj->getParent());
}}});
}
}
|