1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/*
Ousía
Copyright (C) 2014, 2015 Benjamin Paaßen, Andreas Stöckel
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <gtest/gtest.h>
#include <iostream>
#include <core/common/Rtti.hpp>
#include <core/model/Domain.hpp>
#include "TestDomain.hpp"
namespace ousia {
namespace model {
void assert_path(const ResolutionResult &res, const Rtti &expected_type,
std::vector<std::string> expected_path)
{
// Check class/type
ASSERT_TRUE(res.node->isa(expected_type));
// Check path
ASSERT_EQ(expected_path, res.node->path());
}
TEST(Domain, testDomainResolving)
{
// Construct Manager
Logger logger;
Manager mgr{1};
Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
// Get the domain.
Rooted<Domain> domain = constructBookDomain(mgr, sys, logger);
std::vector<ResolutionResult> res;
// There is one domain called "book"
res = domain->resolve("book", typeOf<Domain>());
ASSERT_EQ(1U, res.size());
assert_path(res[0], typeOf<Domain>(), {"book"});
// There is one domain called "book"
res = domain->resolve("book", typeOf<StructuredClass>());
ASSERT_EQ(1U, res.size());
assert_path(res[0], typeOf<StructuredClass>(), {"book", "book"});
// If we explicitly ask for the "book, book" path, then only the
// StructuredClass should be returned.
res = domain->resolve(std::vector<std::string>{"book", "book"},
typeOf<Domain>());
ASSERT_EQ(0U, res.size());
res = domain->resolve(std::vector<std::string>{"book", "book"},
typeOf<StructuredClass>());
ASSERT_EQ(1U, res.size());
// If we ask for "section" the result should be unique as well.
res = domain->resolve("section", typeOf<StructuredClass>());
ASSERT_EQ(1U, res.size());
assert_path(res[0], typeOf<StructuredClass>(), {"book", "section"});
// If we ask for "paragraph" it is referenced two times in the Domain graph,
// but should be returned only once.
res = domain->resolve("paragraph", typeOf<StructuredClass>());
ASSERT_EQ(1U, res.size());
assert_path(res[0], typeOf<StructuredClass>(), {"book", "paragraph"});
}
Rooted<StructuredClass> getClass(const std::string name, Handle<Domain> dom)
{
std::vector<ResolutionResult> res =
dom->resolve(name, RttiTypes::StructuredClass);
return res[0].node.cast<StructuredClass>();
}
TEST(Descriptor, pathTo)
{
// Start with some easy examples from the book domain.
Logger logger;
Manager mgr{1};
Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
// Get the domain.
Rooted<Domain> domain = constructBookDomain(mgr, sys, logger);
// get the book node and the section node.
Rooted<StructuredClass> book = getClass("book", domain);
Rooted<StructuredClass> section = getClass("section", domain);
// get the path in between.
std::vector<Rooted<Node>> path = book->pathTo(section);
ASSERT_EQ(1U, path.size());
ASSERT_TRUE(path[0]->isa(RttiTypes::FieldDescriptor));
// get the text node.
Rooted<StructuredClass> text = getClass("text", domain);
// get the path between book and text via paragraph.
path = book->pathTo(text);
ASSERT_EQ(3U, path.size());
ASSERT_TRUE(path[0]->isa(RttiTypes::FieldDescriptor));
ASSERT_TRUE(path[1]->isa(RttiTypes::StructuredClass));
ASSERT_EQ("paragraph", path[1]->getName());
ASSERT_TRUE(path[2]->isa(RttiTypes::FieldDescriptor));
// get the subsection node.
Rooted<StructuredClass> subsection = getClass("subsection", domain);
// try to get the path between book and subsection.
path = book->pathTo(subsection);
// this should be impossible.
ASSERT_EQ(0U, path.size());
}
TEST(Descriptor, pathToAdvanced)
{
/*
* Now we build a really nasty domain with lots of transparency
* and inheritance. The basic idea is to have three paths from start to
* finish, where one is blocked by overriding fields and the longer valid
* one is found first such that it has to be replaced by the shorter one
* during the search.
*
* To achieve that we have the following structure:
* 1.) The start class inherits from A.
* 2.) A has the target as child in the default field, but the default
* field is overridden in the start class.
* 3.) A has B as child in another field.
* 4.) B is transparent and has no children (but C as subclass)
* 5.) C is a subclass of B, transparent and has
* the target as child (shortest path).
* 6.) start has D as child in the default field.
* 7.) D is transparent has E as child in the default field.
* 8.) E is transparent and has target as child in the default field
* (longer path)
*
* So the path start_field , E , E_field should be returned.
*/
Manager mgr{1};
Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
// Construct the domain
Rooted<Domain> domain{new Domain(mgr, sys, "nasty")};
Cardinality any;
any.merge(Range<size_t>::typeRangeFrom(0));
// Let's create the classes that we need first
Rooted<StructuredClass> A{new StructuredClass(
mgr, "A", domain, any, {nullptr}, {nullptr}, false, true)};
Rooted<StructuredClass> start{new StructuredClass(
mgr, "start", domain, any, {nullptr}, A, false, false)};
Rooted<StructuredClass> B{new StructuredClass(
mgr, "B", domain, any, {nullptr}, {nullptr}, true, false)};
Rooted<StructuredClass> C{
new StructuredClass(mgr, "C", domain, any, {nullptr}, B, true, false)};
Rooted<StructuredClass> D{new StructuredClass(
mgr, "D", domain, any, {nullptr}, {nullptr}, true, false)};
Rooted<StructuredClass> E{new StructuredClass(
mgr, "E", domain, any, {nullptr}, {nullptr}, true, false)};
Rooted<StructuredClass> target{
new StructuredClass(mgr, "target", domain, any)};
// We create two fields for A
Rooted<FieldDescriptor> A_field{new FieldDescriptor(mgr, A)};
A_field->addChild(target);
Rooted<FieldDescriptor> A_field2{new FieldDescriptor(
mgr, A, FieldDescriptor::FieldType::SUBTREE, "second")};
A_field2->addChild(B);
// We create no field for B
// One for C
Rooted<FieldDescriptor> C_field{new FieldDescriptor(mgr, C)};
C_field->addChild(target);
// one for start
Rooted<FieldDescriptor> start_field{new FieldDescriptor(mgr, start)};
start_field->addChild(D);
// One for D
Rooted<FieldDescriptor> D_field{new FieldDescriptor(mgr, D)};
D_field->addChild(E);
// One for E
Rooted<FieldDescriptor> E_field{new FieldDescriptor(mgr, E)};
E_field->addChild(target);
#ifdef MANAGER_GRAPHVIZ_EXPORT
// dump the manager state
mgr.exportGraphviz("nastyDomain.dot");
#endif
// and now we should be able to find the shortest path as suggested
std::vector<Rooted<Node>> path = start->pathTo(target);
ASSERT_EQ(3U, path.size());
ASSERT_TRUE(path[0]->isa(RttiTypes::FieldDescriptor));
ASSERT_EQ("second", path[0]->getName());
ASSERT_TRUE(path[1]->isa(RttiTypes::StructuredClass));
ASSERT_EQ("B", path[1]->getName());
ASSERT_TRUE(path[2]->isa(RttiTypes::FieldDescriptor));
ASSERT_EQ("", path[2]->getName());
}
TEST(StructuredClass, isSubclassOf)
{
// create an inheritance hierarchy.
Manager mgr{1};
Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
Rooted<Domain> domain{new Domain(mgr, sys, "inheritance")};
Cardinality any;
any.merge(Range<size_t>::typeRangeFrom(0));
Rooted<StructuredClass> A{new StructuredClass(
mgr, "A", domain, any, {nullptr}, {nullptr}, false, true)};
// first branch
Rooted<StructuredClass> B{
new StructuredClass(mgr, "B", domain, any, {nullptr}, A)};
Rooted<StructuredClass> C{
new StructuredClass(mgr, "C", domain, any, {nullptr}, B)};
// second branch
Rooted<StructuredClass> D{
new StructuredClass(mgr, "D", domain, any, {nullptr}, A)};
Rooted<StructuredClass> E{
new StructuredClass(mgr, "E", domain, any, {nullptr}, D)};
Rooted<StructuredClass> F{
new StructuredClass(mgr, "F", domain, any, {nullptr}, D)};
// check function results
ASSERT_FALSE(A->isSubclassOf(A));
ASSERT_FALSE(A->isSubclassOf(B));
ASSERT_FALSE(A->isSubclassOf(C));
ASSERT_FALSE(A->isSubclassOf(D));
ASSERT_FALSE(A->isSubclassOf(E));
ASSERT_FALSE(A->isSubclassOf(F));
ASSERT_TRUE(B->isSubclassOf(A));
ASSERT_FALSE(B->isSubclassOf(B));
ASSERT_FALSE(B->isSubclassOf(C));
ASSERT_FALSE(B->isSubclassOf(D));
ASSERT_FALSE(B->isSubclassOf(E));
ASSERT_FALSE(B->isSubclassOf(F));
ASSERT_TRUE(C->isSubclassOf(A));
ASSERT_TRUE(C->isSubclassOf(B));
ASSERT_FALSE(C->isSubclassOf(C));
ASSERT_FALSE(C->isSubclassOf(D));
ASSERT_FALSE(C->isSubclassOf(E));
ASSERT_FALSE(C->isSubclassOf(F));
ASSERT_TRUE(D->isSubclassOf(A));
ASSERT_FALSE(D->isSubclassOf(B));
ASSERT_FALSE(D->isSubclassOf(C));
ASSERT_FALSE(D->isSubclassOf(D));
ASSERT_FALSE(D->isSubclassOf(E));
ASSERT_FALSE(D->isSubclassOf(F));
ASSERT_TRUE(E->isSubclassOf(A));
ASSERT_FALSE(E->isSubclassOf(B));
ASSERT_FALSE(E->isSubclassOf(C));
ASSERT_TRUE(E->isSubclassOf(D));
ASSERT_FALSE(E->isSubclassOf(E));
ASSERT_FALSE(E->isSubclassOf(F));
ASSERT_TRUE(F->isSubclassOf(A));
ASSERT_FALSE(F->isSubclassOf(B));
ASSERT_FALSE(F->isSubclassOf(C));
ASSERT_TRUE(F->isSubclassOf(D));
ASSERT_FALSE(F->isSubclassOf(E));
ASSERT_FALSE(F->isSubclassOf(F));
}
}
}
|