summaryrefslogtreecommitdiff
path: root/test/core/model/OntologyTest.cpp
blob: 764dcb4465c6dfdeadf02480b1d233bf7bb379e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/*
    Ousía
    Copyright (C) 2014, 2015  Benjamin Paaßen, Andreas Stöckel

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <gtest/gtest.h>

#include <iostream>

#include <core/common/Rtti.hpp>
#include <core/frontend/TerminalLogger.hpp>
#include <core/model/Ontology.hpp>

#include "TestOntology.hpp"

namespace ousia {

void assert_path(const ResolutionResult &res, const Rtti *expected_type,
                 std::vector<std::string> expected_path)
{
	// Check class/type
	ASSERT_TRUE(res.node->isa(expected_type));

	// Check path
	ASSERT_EQ(expected_path, res.node->path());
}

TEST(Ontology, testOntologyResolving)
{
	// Construct Manager
	Logger logger;
	Manager mgr{1};
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	// Get the ontology.
	Rooted<Ontology> ontology = constructBookOntology(mgr, sys, logger);

	std::vector<ResolutionResult> res;

	// There is one ontology called "book"
	res = ontology->resolve(&RttiTypes::Ontology, "book");
	ASSERT_EQ(1U, res.size());
	assert_path(res[0], &RttiTypes::Ontology, {"book"});

	// There is one ontology called "book"
	res = ontology->resolve(&RttiTypes::StructuredClass, "book");
	ASSERT_EQ(1U, res.size());
	assert_path(res[0], &RttiTypes::StructuredClass, {"book", "book"});

	// If we explicitly ask for the "book, book" path, then only the
	// StructuredClass should be returned.
	res = ontology->resolve(&RttiTypes::Ontology,
	                      std::vector<std::string>{"book", "book"});
	ASSERT_EQ(0U, res.size());

	res = ontology->resolve(&RttiTypes::StructuredClass,
	                      std::vector<std::string>{"book", "book"});
	ASSERT_EQ(1U, res.size());

	// If we ask for "section" the result should be unique as well.
	res = ontology->resolve(&RttiTypes::StructuredClass, "section");
	ASSERT_EQ(1U, res.size());
	assert_path(res[0], &RttiTypes::StructuredClass, {"book", "section"});

	// If we ask for "paragraph" it is referenced two times in the Ontology graph,
	// but should be returned only once.
	res = ontology->resolve(&RttiTypes::StructuredClass, "paragraph");
	ASSERT_EQ(1U, res.size());
	assert_path(res[0], &RttiTypes::StructuredClass, {"book", "paragraph"});
}

// i use this wrapper due to the strange behaviour of GTEST.
static void assertFalse(bool b){
	ASSERT_FALSE(b);
}

static Rooted<FieldDescriptor> createUnsortedPrimitiveField(
    Handle<StructuredClass> strct, Handle<Type> type, Logger &logger, bool tree,
    std::string name)
{
	FieldDescriptor::FieldType fieldType = FieldDescriptor::FieldType::SUBTREE;
	if (tree) {
		fieldType = FieldDescriptor::FieldType::TREE;
	}

	auto res = strct->createPrimitiveFieldDescriptor(type, logger, fieldType,
	                                                 std::move(name));
	assertFalse(res.second);
	return res.first;
}

TEST(StructuredClass, getFieldDescriptors)
{
	/*
	 * We construct a case with the three levels:
	 * 1.) A has the SUBTREE fields a and b as well as a TREE field.
	 * 2.) B is a subclass of A and has the SUBTREE fields b and c as well as
	 *     a TREE field.
	 * 3.) C is a subclass of B and has the SUBTREE field a.
	 * As a result we expect C to have none of As fields, the TREE field of B,
	 * and the SUBTREE fields a (of C) , b and c (of B).
	 */
	TerminalLogger logger{std::cout};
	Manager mgr{1};
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	Rooted<Ontology> ontology{new Ontology(mgr, sys, "myOntology")};

	Rooted<StructuredClass> A{new StructuredClass(
	    mgr, "A", ontology, Cardinality::any(), nullptr, false, true)};
	Rooted<FieldDescriptor> A_a = createUnsortedPrimitiveField(
	    A, sys->getStringType(), logger, false, "a");
	Rooted<FieldDescriptor> A_b = createUnsortedPrimitiveField(
	    A, sys->getStringType(), logger, false, "b");
	Rooted<FieldDescriptor> A_main = createUnsortedPrimitiveField(
	    A, sys->getStringType(), logger, true, "somename");

	Rooted<StructuredClass> B{new StructuredClass(
	    mgr, "B", ontology, Cardinality::any(), A, false, true)};
	Rooted<FieldDescriptor> B_b = createUnsortedPrimitiveField(
	    B, sys->getStringType(), logger, false, "b");
	Rooted<FieldDescriptor> B_c = createUnsortedPrimitiveField(
	    B, sys->getStringType(), logger, false, "c");
	Rooted<FieldDescriptor> B_main = createUnsortedPrimitiveField(
	    B, sys->getStringType(), logger, true, "othername");

	Rooted<StructuredClass> C{new StructuredClass(
	    mgr, "C", ontology, Cardinality::any(), B, false, true)};
	Rooted<FieldDescriptor> C_a = createUnsortedPrimitiveField(
	    C, sys->getStringType(), logger, false, "a");

	ASSERT_TRUE(ontology->validate(logger));

	// check all FieldDescriptors
	{
		NodeVector<FieldDescriptor> fds = A->getFieldDescriptors();
		ASSERT_EQ(3, fds.size());
		ASSERT_EQ(A_a, fds[0]);
		ASSERT_EQ(A_b, fds[1]);
		ASSERT_EQ(A_main, fds[2]);
	}
	{
		NodeVector<FieldDescriptor> fds = B->getFieldDescriptors();
		ASSERT_EQ(4, fds.size());
		ASSERT_EQ(A_a, fds[0]);
		ASSERT_EQ(B_b, fds[1]);
		ASSERT_EQ(B_c, fds[2]);
		ASSERT_EQ(B_main, fds[3]);
	}
	{
		NodeVector<FieldDescriptor> fds = C->getFieldDescriptors();
		ASSERT_EQ(4, fds.size());
		ASSERT_EQ(B_b, fds[0]);
		ASSERT_EQ(B_c, fds[1]);
		// superclass fields come before subclass fields (except for the TREE
		// field, which is always last).
		ASSERT_EQ(C_a, fds[2]);
		ASSERT_EQ(B_main, fds[3]);
	}
}


TEST(StructuredClass, getFieldDescriptorsCycles)
{
	Logger logger;
	Manager mgr{1};
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	Rooted<Ontology> ontology{new Ontology(mgr, sys, "myOntology")};

	Rooted<StructuredClass> A{new StructuredClass(
	    mgr, "A", ontology, Cardinality::any(), nullptr, false, true)};
	A->addSubclass(A, logger);
	Rooted<FieldDescriptor> A_a = createUnsortedPrimitiveField(
	    A, sys->getStringType(), logger, false, "a");
	ASSERT_FALSE(ontology->validate(logger));
	// if we call getFieldDescriptors that should still return a valid result.
	NodeVector<FieldDescriptor> fds = A->getFieldDescriptors();
	ASSERT_EQ(1, fds.size());
	ASSERT_EQ(A_a, fds[0]);
}

Rooted<StructuredClass> getClass(const std::string name, Handle<Ontology> dom)
{
	std::vector<ResolutionResult> res =
	    dom->resolve(&RttiTypes::StructuredClass, name);
	return res[0].node.cast<StructuredClass>();
}

TEST(Descriptor, pathTo)
{
	// Start with some easy examples from the book ontology.
	TerminalLogger logger{std::cout};
	Manager mgr{1};
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	// Get the ontology.
	Rooted<Ontology> ontology = constructBookOntology(mgr, sys, logger);

	// get the book node and the section node.
	Rooted<StructuredClass> book = getClass("book", ontology);
	Rooted<StructuredClass> section = getClass("section", ontology);
	// get the path in between.
	NodeVector<Node> path = book->pathTo(section, logger);
	ASSERT_EQ(1U, path.size());
	ASSERT_TRUE(path[0]->isa(&RttiTypes::FieldDescriptor));

	// get the text node.
	Rooted<StructuredClass> text = getClass("text", ontology);
	// get the path between book and text via paragraph.
	path = book->pathTo(text, logger);
	ASSERT_EQ(3U, path.size());
	ASSERT_TRUE(path[0]->isa(&RttiTypes::FieldDescriptor));
	ASSERT_TRUE(path[1]->isa(&RttiTypes::StructuredClass));
	ASSERT_EQ("paragraph", path[1]->getName());
	ASSERT_TRUE(path[2]->isa(&RttiTypes::FieldDescriptor));

	// get the subsection node.
	Rooted<StructuredClass> subsection = getClass("subsection", ontology);
	// try to get the path between book and subsection.
	path = book->pathTo(subsection, logger);
	// this should be impossible.
	ASSERT_EQ(0U, path.size());

	// try to construct the path between section and the text field.
	auto res = section->pathTo(text->getFieldDescriptor(), logger);
	ASSERT_TRUE(res.second);
	path = res.first;
	ASSERT_EQ(4U, path.size());
	ASSERT_TRUE(path[0]->isa(&RttiTypes::FieldDescriptor));
	ASSERT_TRUE(path[1]->isa(&RttiTypes::StructuredClass));
	ASSERT_EQ("paragraph", path[1]->getName());
	ASSERT_TRUE(path[2]->isa(&RttiTypes::FieldDescriptor));
	ASSERT_TRUE(path[3]->isa(&RttiTypes::StructuredClass));
	ASSERT_EQ("text", path[3]->getName());
}

TEST(Descriptor, pathToAdvanced)
{
	/*
	 * Now we build a really nasty ontology with lots of transparency
	 * and inheritance. The basic idea is to have three paths from start to
	 * finish, where one is blocked by overriding fields and the longer valid
	 * one is found first such that it has to be replaced by the shorter one
	 * during the search.
	 *
	 * To achieve that we have the following structure:
	 * 1.) The start class inherits from A.
	 * 2.) A has B as child in the default field.
	 * 3.) B is transparent and has no children (but C as subclass)
	 * 4.) C is a subclass of B, transparent and has
	 *     the target as child (shortest path).
	 * 5.) A has D as child in the default field.
	 * 6.) D is transparent has E as child in the default field.
	 * 7.) E is transparent and has target as child in the default field
	 *     (longer path)
	 *
	 * So the path A_second_field, C, C_field should be returned.
	 */
	Manager mgr{1};
	TerminalLogger logger{std::cout};
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	// Construct the ontology
	Rooted<Ontology> ontology{new Ontology(mgr, sys, "nasty")};

	// Let's create the classes that we need first
	Rooted<StructuredClass> A{new StructuredClass(
	    mgr, "A", ontology, Cardinality::any(), {nullptr}, false, true)};

	Rooted<StructuredClass> start{new StructuredClass(
	    mgr, "start", ontology, Cardinality::any(), A, false, false)};

	Rooted<StructuredClass> B{new StructuredClass(
	    mgr, "B", ontology, Cardinality::any(), {nullptr}, true, false)};

	Rooted<StructuredClass> C{new StructuredClass(
	    mgr, "C", ontology, Cardinality::any(), B, true, false)};

	Rooted<StructuredClass> D{new StructuredClass(
	    mgr, "D", ontology, Cardinality::any(), {nullptr}, true, false)};

	Rooted<StructuredClass> E{new StructuredClass(
	    mgr, "E", ontology, Cardinality::any(), {nullptr}, true, false)};

	Rooted<StructuredClass> target{
	    new StructuredClass(mgr, "target", ontology, Cardinality::any())};

	// We create a field for A
	Rooted<FieldDescriptor> A_field = A->createFieldDescriptor(logger).first;
	A_field->addChild(B);
	A_field->addChild(D);

	// We create no field for B
	// One for C
	Rooted<FieldDescriptor> C_field = C->createFieldDescriptor(logger).first;
	C_field->addChild(target);

	// One for D
	Rooted<FieldDescriptor> D_field = D->createFieldDescriptor(logger).first;
	D_field->addChild(E);

	// One for E
	Rooted<FieldDescriptor> E_field = E->createFieldDescriptor(logger).first;
	E_field->addChild(target);

	ASSERT_TRUE(ontology->validate(logger));

#ifdef MANAGER_GRAPHVIZ_EXPORT
	// dump the manager state
	mgr.exportGraphviz("nastyOntology.dot");
#endif

	// and now we should be able to find the shortest path as suggested
	NodeVector<Node> path = start->pathTo(target, logger);
	ASSERT_EQ(3U, path.size());
	ASSERT_TRUE(path[0]->isa(&RttiTypes::FieldDescriptor));
	ASSERT_EQ("", path[0]->getName());
	ASSERT_TRUE(path[1]->isa(&RttiTypes::StructuredClass));
	ASSERT_EQ("C", path[1]->getName());
	ASSERT_TRUE(path[2]->isa(&RttiTypes::FieldDescriptor));
	ASSERT_EQ("", path[2]->getName());
}

TEST(Descriptor, pathToCycles)
{
	// build a ontology with a cycle.
	Manager mgr{1};
	Logger logger;
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	// Construct the ontology
	Rooted<Ontology> ontology{new Ontology(mgr, sys, "cycles")};
	Rooted<StructuredClass> A{new StructuredClass(
	    mgr, "A", ontology, Cardinality::any(), {nullptr}, true, true)};
	A->addSubclass(A, logger);
	ASSERT_FALSE(ontology->validate(logger));
	Rooted<StructuredClass> B{new StructuredClass(
	    mgr, "B", ontology, Cardinality::any(), {nullptr}, false, true)};
	Rooted<FieldDescriptor> A_field = A->createFieldDescriptor(logger).first;
	A_field->addChild(B);
	/*
	 * Now try to create the path from A to B. A direct path is possible but
	 * in the worst case this could also try to find shorter paths via an
	 * endless repition of A instances.
	 * As we cut the search tree at paths that are longer than our current
	 * optimum this should not happen, though.
	 */
	NodeVector<Node> path = A->pathTo(B, logger);
	ASSERT_EQ(1, path.size());
	ASSERT_EQ(A_field, path[0]);
}

TEST(Descriptor, getDefaultFields)
{
	// construct a ontology with lots of default fields to test.
	// start with a single structure class.
	Manager mgr{1};
	TerminalLogger logger{std::cout};
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	// Construct the ontology
	Rooted<Ontology> ontology{new Ontology(mgr, sys, "nasty")};

	Rooted<StructuredClass> A{new StructuredClass(
	    mgr, "A", ontology, Cardinality::any(), nullptr, false, true)};

	// in this trivial case no field should be found.
	ASSERT_TRUE(A->getDefaultFields().empty());

	// create a field.
	Rooted<FieldDescriptor> A_prim_field =
	    A->createPrimitiveFieldDescriptor(sys->getStringType(), logger).first;
	// now we should find that.
	auto fields = A->getDefaultFields();
	ASSERT_EQ(1U, fields.size());
	ASSERT_EQ(A_prim_field, fields[0]);

	// remove that field from A and add it to another class.

	Rooted<StructuredClass> B{new StructuredClass(
	    mgr, "B", ontology, Cardinality::any(), nullptr, false, true)};

	B->moveFieldDescriptor(A_prim_field, logger);

	// new we shouldn't find the field anymore.
	ASSERT_TRUE(A->getDefaultFields().empty());

	// but we should find it again if we set B as superclass of A.
	A->setSuperclass(B, logger);
	fields = A->getDefaultFields();
	ASSERT_EQ(1U, fields.size());
	ASSERT_EQ(A_prim_field, fields[0]);

	// and we should not be able to find it if we override the field.
	Rooted<FieldDescriptor> A_field = A->createFieldDescriptor(logger).first;
	ASSERT_TRUE(A->getDefaultFields().empty());

	// add a transparent child class.

	Rooted<StructuredClass> C{new StructuredClass(
	    mgr, "C", ontology, Cardinality::any(), nullptr, true, false)};
	A_field->addChild(C);

	// add a primitive field for it.
	Rooted<FieldDescriptor> C_field =
	    C->createPrimitiveFieldDescriptor(sys->getStringType(), logger).first;

	// now we should find that.
	fields = A->getDefaultFields();
	ASSERT_EQ(1U, fields.size());
	ASSERT_EQ(C_field, fields[0]);

	// add another transparent child class to A with a daughter class that has
	// in turn a subclass with a primitive field.
	Rooted<StructuredClass> D{new StructuredClass(
	    mgr, "D", ontology, Cardinality::any(), nullptr, true, false)};
	A_field->addChild(D);
	Rooted<FieldDescriptor> D_field = D->createFieldDescriptor(logger).first;
	Rooted<StructuredClass> E{new StructuredClass(
	    mgr, "E", ontology, Cardinality::any(), nullptr, true, false)};
	D_field->addChild(E);
	Rooted<StructuredClass> F{new StructuredClass(
	    mgr, "E", ontology, Cardinality::any(), E, true, false)};
	Rooted<FieldDescriptor> F_field =
	    F->createPrimitiveFieldDescriptor(sys->getStringType(), logger).first;

	// now we should find both primitive fields, but the C field first.
	fields = A->getDefaultFields();
	ASSERT_EQ(2U, fields.size());
	ASSERT_EQ(C_field, fields[0]);
	ASSERT_EQ(F_field, fields[1]);
}

TEST(Descriptor, getDefaultFieldsCycles)
{
	// build a ontology with a cycle.
	Manager mgr{1};
	Logger logger;
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	// Construct the ontology
	Rooted<Ontology> ontology{new Ontology(mgr, sys, "cycles")};
	Rooted<StructuredClass> A{new StructuredClass(
	    mgr, "A", ontology, Cardinality::any(), {nullptr}, true, true)};
	A->addSubclass(A, logger);
	ASSERT_FALSE(ontology->validate(logger));
	Rooted<FieldDescriptor> A_field =
	    A->createPrimitiveFieldDescriptor(sys->getStringType(), logger).first;
	/*
	 * Now try to get the default fields of A. This should not lead to cycles
	 * if we correctly note all already visited nodes.
	 */
	NodeVector<FieldDescriptor> defaultFields = A->getDefaultFields();
	ASSERT_EQ(1, defaultFields.size());
	ASSERT_EQ(A_field, defaultFields[0]);
}

TEST(Descriptor, getPermittedChildren)
{
	// analyze the book ontology.
	TerminalLogger logger{std::cout};
	Manager mgr{1};
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	// Get the ontology.
	Rooted<Ontology> ontology = constructBookOntology(mgr, sys, logger);
	// get the relevant classes.
	Rooted<StructuredClass> book = getClass("book", ontology);
	Rooted<StructuredClass> section = getClass("section", ontology);
	Rooted<StructuredClass> paragraph = getClass("paragraph", ontology);
	Rooted<StructuredClass> text = getClass("text", ontology);
	/*
	 * as permitted children we expect section, paragraph and text in exactly
	 * that order. section should be before paragraph because of declaration
	 * order and text should be last because it needs a transparent paragraph
	 * in between.
	 */
	NodeVector<StructuredClass> children = book->getPermittedChildren();
	ASSERT_EQ(3U, children.size());
	ASSERT_EQ(section, children[0]);
	ASSERT_EQ(paragraph, children[1]);
	ASSERT_EQ(text, children[2]);

	// Now we add a subclass to text.
	Rooted<StructuredClass> sub{new StructuredClass(
	    mgr, "Subclass", ontology, Cardinality::any(), text, true, false)};
	// And that should be in the result list as well now.
	children = book->getPermittedChildren();
	ASSERT_EQ(4U, children.size());
	ASSERT_EQ(section, children[0]);
	ASSERT_EQ(paragraph, children[1]);
	ASSERT_EQ(text, children[2]);
	ASSERT_EQ(sub, children[3]);
}

TEST(Descriptor, getPermittedChildrenCycles)
{
	// build a ontology with a cycle.
	Manager mgr{1};
	Logger logger;
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	// Construct the ontology
	Rooted<Ontology> ontology{new Ontology(mgr, sys, "cycles")};
	Rooted<StructuredClass> A{new StructuredClass(
	    mgr, "A", ontology, Cardinality::any(), {nullptr}, true, true)};
	A->addSubclass(A, logger);
	ASSERT_FALSE(ontology->validate(logger));
	Rooted<FieldDescriptor> A_field = A->createFieldDescriptor(logger).first;
	// we make the cycle worse by adding A as child of itself.
	A_field->addChild(A);
	/*
	 * Now try to get the permitted children of A. This should not lead to
	 * cycles
	 * if we correctly note all already visited nodes.
	 */
	NodeVector<StructuredClass> children = A->getPermittedChildren();
	ASSERT_EQ(1, children.size());
	ASSERT_EQ(A, children[0]);
}

TEST(StructuredClass, isSubclassOf)
{
	// create an inheritance hierarchy.
	Manager mgr{1};
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	Rooted<Ontology> ontology{new Ontology(mgr, sys, "inheritance")};
	Rooted<StructuredClass> A{new StructuredClass(
	    mgr, "A", ontology, Cardinality::any(), {nullptr}, false, true)};
	// first branch
	Rooted<StructuredClass> B{
	    new StructuredClass(mgr, "B", ontology, Cardinality::any(), A)};
	Rooted<StructuredClass> C{
	    new StructuredClass(mgr, "C", ontology, Cardinality::any(), B)};
	// second branch
	Rooted<StructuredClass> D{
	    new StructuredClass(mgr, "D", ontology, Cardinality::any(), A)};
	Rooted<StructuredClass> E{
	    new StructuredClass(mgr, "E", ontology, Cardinality::any(), D)};
	Rooted<StructuredClass> F{
	    new StructuredClass(mgr, "F", ontology, Cardinality::any(), D)};

	// check function results
	ASSERT_FALSE(A->isSubclassOf(A));
	ASSERT_FALSE(A->isSubclassOf(B));
	ASSERT_FALSE(A->isSubclassOf(C));
	ASSERT_FALSE(A->isSubclassOf(D));
	ASSERT_FALSE(A->isSubclassOf(E));
	ASSERT_FALSE(A->isSubclassOf(F));

	ASSERT_TRUE(B->isSubclassOf(A));
	ASSERT_FALSE(B->isSubclassOf(B));
	ASSERT_FALSE(B->isSubclassOf(C));
	ASSERT_FALSE(B->isSubclassOf(D));
	ASSERT_FALSE(B->isSubclassOf(E));
	ASSERT_FALSE(B->isSubclassOf(F));

	ASSERT_TRUE(C->isSubclassOf(A));
	ASSERT_TRUE(C->isSubclassOf(B));
	ASSERT_FALSE(C->isSubclassOf(C));
	ASSERT_FALSE(C->isSubclassOf(D));
	ASSERT_FALSE(C->isSubclassOf(E));
	ASSERT_FALSE(C->isSubclassOf(F));

	ASSERT_TRUE(D->isSubclassOf(A));
	ASSERT_FALSE(D->isSubclassOf(B));
	ASSERT_FALSE(D->isSubclassOf(C));
	ASSERT_FALSE(D->isSubclassOf(D));
	ASSERT_FALSE(D->isSubclassOf(E));
	ASSERT_FALSE(D->isSubclassOf(F));

	ASSERT_TRUE(E->isSubclassOf(A));
	ASSERT_FALSE(E->isSubclassOf(B));
	ASSERT_FALSE(E->isSubclassOf(C));
	ASSERT_TRUE(E->isSubclassOf(D));
	ASSERT_FALSE(E->isSubclassOf(E));
	ASSERT_FALSE(E->isSubclassOf(F));

	ASSERT_TRUE(F->isSubclassOf(A));
	ASSERT_FALSE(F->isSubclassOf(B));
	ASSERT_FALSE(F->isSubclassOf(C));
	ASSERT_TRUE(F->isSubclassOf(D));
	ASSERT_FALSE(F->isSubclassOf(E));
	ASSERT_FALSE(F->isSubclassOf(F));
}

TEST(Ontology, validate)
{
	TerminalLogger logger{std::cerr, true};
	Manager mgr{1};
	Rooted<SystemTypesystem> sys{new SystemTypesystem(mgr)};
	// start with an easy example: Our book ontology should be valid.
	{
		Rooted<Ontology> ontology = constructBookOntology(mgr, sys, logger);
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
	}
	{
		// Even easier: An empty ontology should be valid.
		Rooted<Ontology> ontology{new Ontology(mgr, sys, "ontology")};
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		// if we add a StructureClass it should be valid still.
		Rooted<StructuredClass> base{
		    new StructuredClass(mgr, "myClass", ontology)};
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		// if we tamper with the name, however, it shouldn't be valid anymore.
		base->setName("");
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_FALSE(ontology->validate(logger));
		base->setName("my class");
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_FALSE(ontology->validate(logger));
		base->setName("myClass");
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		// Let's add a primitive field (without a primitive type at first)
		Rooted<FieldDescriptor> base_field =
		    base->createPrimitiveFieldDescriptor(nullptr, logger).first;
		// this should not be valid.
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_FALSE(ontology->validate(logger));
		// but it should be if we set the type.
		base_field->setPrimitiveType(sys->getStringType());
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		// add a subclass for our base class.
		Rooted<StructuredClass> sub{new StructuredClass(mgr, "sub", ontology)};
		// this should be valid in itself.
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		// and still if we add a superclass.
		sub->setSuperclass(base, logger);
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		// and still if we remove the subclass from the base class.
		base->removeSubclass(sub, logger);
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		ASSERT_EQ(nullptr, sub->getSuperclass());
		// and still if we re-add it.
		base->addSubclass(sub, logger);
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		ASSERT_EQ(base, sub->getSuperclass());
		// add a non-primitive field to the child class.
		Rooted<FieldDescriptor> sub_field =
		    sub->createFieldDescriptor(logger).first;
		// this should not be valid because we allow no children.
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_FALSE(ontology->validate(logger));
		// we should also be able to add a child and make it valid.
		sub_field->addChild(base);
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		// it should be invalid if we add it twice.
		sub_field->addChild(base);
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_FALSE(ontology->validate(logger));
		// and valid again if we remove it once.
		sub_field->removeChild(base);
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		// if we set a primitive type it should be invalid
		sub_field->setPrimitiveType(sys->getStringType());
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_FALSE(ontology->validate(logger));
		// and valid again if we unset it.
		sub_field->setPrimitiveType(nullptr);
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
		// It should be invalid if we set another TREE field.
		Rooted<FieldDescriptor> sub_field2 =
		    sub->createFieldDescriptor(logger, FieldDescriptor::FieldType::TREE,
		                               "test", false).first;
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_FALSE(ontology->validate(logger));
		// but valid again if we remove it
		sub->removeFieldDescriptor(sub_field2);
		ASSERT_EQ(ValidationState::UNKNOWN, ontology->getValidationState());
		ASSERT_TRUE(ontology->validate(logger));
	}
}
}